Geometrical Derivation of Frictional Forces for Granular Media Under Slow Shearing

نویسندگان

  • Andrés A. Peña
  • Pedro G. Lind
  • Sean McNamara
  • Hans J. Herrmann
چکیده

We present an alternative way to determine the frictional forces at the contact between two particles. This alternative approach has its motivation in a detailed analysis of the bounds on the time integration step in Discrete Element Method (DEM) for simulating collisions and shearing of granular assemblies. We show that, in standard numerical schemes, the upper limit for the time integration step, usually taken from the average time tc of one contact, is in fact not sufficiently small to guarantee numerical convergence of the system during relaxation. In particular, we study in detail how the kinetic energy decays during the relaxation stage and compute the correct upper limits for the time integration step, which are significantly smaller than the ones commonly used. In addition, we introduce an alternative approach, based on simple relations to compute the frictional forces, that converges even for time integration steps above the upper limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

epl draft Crossover from quasi-static to dense flow regime in compressed frictional granular media

We investigate the evolution of multi-scale mechanical properties towards the macroscopic mechanical instability in frictional granular media under multiaxial compressive loading. Spatial correlations of shear stress redistribution following nucleating contact sliding events and shear strain localization are investigated. We report growing correlation lengths associated to both shear stress and...

متن کامل

A frictional Cosserat model for the slow shearing of granular materials

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyze plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classica...

متن کامل

Crossover from quasi-static to dense flow regime in compressed frictional granular media

Being ubiquitous in a large variety of geomaterials, granular assemblies play a crucial role in the mechanical stability of engineering and geophysical structures. For these applications, an accurate knowledge of the processes at the origin of shear localization, i.e. faulting, in frictional granular assemblies submitted to compressive loading is needed. Here we tackle this problem by performin...

متن کامل

Constitutive relations for cohesionless frictional granular materials

Based on the micro-mechanical model recently developed by Nemat-Nasser S. (J. Mech. Phys. Solids 48 (2000) 1541), a three-dimensional continuum mechanics model is presented for the deformation of granular materials which carry the applied load through frictional contacts. The model incorporates the anisotropy (or fabric) which develops as a frictional granular mass is deformed in shear, and inc...

متن کامل

Robophysical study of jumping dynamics on granular media

Characterizing forces on deformable objects intruding into sand and soil requires understanding the solidand fluid-like responses of such substrates and their e ect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be describ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008